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LETTER TO THE EDITOR 

Critical KAM circles and the Brjuno function 

M Malavasi and S Marmi 
Dipartimento di Fisicat, Universiti di Bologna, Via Imerio 46, 40126 Bologna, Italy 

Received 20 March 1989, in final form 8 May 1989 

Abstract. We consider a complex Hamiltonian map, and show how to approximate the 
critical value of the perturbation parameter at which a given KAM circle disappears by 
means of a function (the Brjuno function) which only depends on the continued fraction 
expansion of the rotation number. 

The existence of invariant circles in the dynamics of iterated area-preserving maps has 
been intensively investigated by various authors (Amol’d 1961, Aubry 1983, Celletti 
and Chierchia 1988, Greene 1979, Greene and Percival 1981, Herman 1983, 1986, 
Mackay 1983, Mackay and Percival 1985, Mather 1984, Moser 1962, 1986). 

From Kolmogorov-Arnol’d-Moser ( KAM) theory, one knows that most invariant 
circles are preserved under small perturbations of integrable maps. On these invariant 
circles the dynamics is analytically conjugated to translations with rotation numbers 
which are strongly irrational, so as to verify, for example, some Diophantine inequality. 
For large enough perturbations it has been numerically and analytically shown that 
KAM circles disappear. 

The problem of obtaining accurate estimates of the breakdown threshold for an 
invariant circle of given rotation number is still basically unsolved, since one lacks a 
rigorous and computationally effective method. 

On the other hand, it is generally believed that the value of the parameter at which 
the perturbation series for a given invariant circle diverges coincides with the breakdown 
threshold, and at least it certainly gives an extremely good lower bound. 

The former is, for instance, the case for complex analytic maps, where the existence 
of critical points on the breakdown circles allows one to study the dependence of this 
threshold on the rotation number with a very good accuracy (Marmi 1988a, b, 1989). 

We report here briefly on a simple number-theoretical function, the Brjuno function 
(Brjuno 1971, 1972, Yoccoz 1988), which provides a natural tool for estimating this 
threshold for complex analytic and area-preserving maps. We refer to Marmi (1989) 
for more details and proofs. 

Given an area-preserving map, let K denote the perturbation parameter, so that 
when K = 0 the phase space is completely foliated into invariant circles. The critical 
value of K, at which an invariant circle is destroyed, clearly depends on the rotation 
number w and on the map itself. 

Critical functions K = K ( w )  were first studied by Percival (1982) for the semistan- 
dard map, which is a so-called half-plane map. These are complex area-preserving 
maps, but show most of the relevant features of real maps. More recently, Percival 
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and Vivaldi (1988) have studied the critical function for the modulated singular map 
(MSM) 

where one considers invariant circles with rotation number equal to the frequency o 
of the modulation. 

Assume that the rotation number w is strongly irrational, so that a corresponding 
invariant circle exists for O <  K Q K ( w ) .  This is, for example, true if o satisfies a 
Diophantine condition, i.e. there exist a 2 and y > 0 such that for all p, q E $1, q # 
0 , ) w  - p / q  I 3 yq-”. Then the map is analytically conjugated to the rotation 

z,+, = exp(2.rrio)zn r, = K exp(2rinw) (2) 
i.e., there exists a function @(z), holomorphic in a disk of radius K ( o )  around z =0, 
such that q, = @(z,,) and p ,  = @(z,,+~) - @(z,,). The conjugation function @(z) can be 
expanded into a convergent power series @(z) = ZrZl  @,rn and must satisfy the 
functional equation 

( @ ( z ) -  l)(S2@)(Z) = 2 (3) 
where (6*@)(z) = @(exp(2rioz) - 2 @ ( 2 )  +@(exp(-2~iw)z) .  The coefficients a,, are 
easily obtained by matching powers in (3): = l/D1 and for all n 2 2 

where {D,}:=l is the divisors sequence 

D,, = [2 sin( 7rnw)]2. 

K ( w  

( 5 )  

The critical function K ( w )  is obtained by means of Hadamard’s formula: 

= lim sup I@,, I l’,. 
n-m 

In figure 1 we have plotted the critical function K ( w ) ,  obtained by Hadamard’s 
formula applied to Q5@, at 5000 uniformly distributed random rotation numbers o E IO, 
i[. The self-similarity of this fractal function, which vanishes at all rationals and for 
some Liouville numbers, is evident and it is a common feature both of area-preserving 
and complex analytic maps (Percival 1982, Marmi 1988a, 1989). Percival and Vivaldi 
(1988), by means of a subtle analysis of the influence of the (small) divisors D, on 
the convergence radius K ( w  ), identified the coefficients a,,, with sums over suitably 
defined planar trees. Thus they succeeded in writing the critical function as a solution 
of a transcendental equation and give a fairly good approximation of figure 1, when 
the points too close to the resonances occumng at rational w are discarded. 

We will now show how a very simple function, the Brjuno function, which only 
depends on the continued fraction expansion [a,, al , . . . , a,,, . . .] of U, provides a 
good approximation of K ( o )  with the right behaviour near resonances. The Brjuno 
function has also been used recently by Yoccoz (1988) in his study of the optimal 
number theoretical conditions for the Siege1 centre theorem. 

Let ( ) and 11 11 denote respectively the nearest integer and the distance from the 
nearest integer of a real number, and let w E 02\42. Consider two sequences { bn}:=o E N 
and {e,,}:=, E IO, ;[ defined by bo = (U), eo = IIw 11 and for n z- 1 

1 

b, = e n  = llClll. ( 6 )  
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w 

Figure 1. The critical function K ( w )  for the MSM a5 a function of o E [0 ,  f] computed by 
applying Hadamard's formula to (Dso0. The numerical error is approximately lo-'. 

Moreover, let P n  = II,",, ei if n 3 0, P-l  = 1. The values of P j  are related to the continued 
fraction approximations of w since one can show that to each j corresponds n = n ( j )  3 j 
such that 

Pj = ( - l ) " ( q n w  - ~ n )  (7) 

where p n / q n  is a partial fraction of U :  

1 _ -  Pn - a,+ 
1 

a1 + 9 n  
1 
1 

. 1  a2+ , 

. +-. 

The Brjuno function B ( w )  is defined by 

and for all w E R\Q n IO, $[ satisfies 

B ( w )  = -log w + o B ( w - ' ) .  (10) 

In fact B converges for all Diophantine w and for a class of Liouville numbers (those 
for which X:=,(log q k s l / q k )  < 03). 

If B ( w )  <a, one can prove that the critical function K ( w )  of the MSM (1) satisfies 

log K ( w ) 3  C ' - 4 B ( w )  (11) 



L566 Letter to the Editor 

where C' is some constant independent of w. In particular, this shows that the 
convergence of the Brjuno function is a sufficient condition for the existence of an 
invariant circle of the MSM with rotation number w. 

The proof, based on Siegel's version of the majorant series method (Siegel 1942) 
and its improvement due to Brjuno (1971), is rather elementary but long, and we will 
only sketch it: we refer to Marmi (1989) for the details. 

For all n 2 1,  let 

E , :  = Isin(rnw)l2. (12) 

Following Siegel, we introduce the two sequences 

As one can immediately check by induction, for all n 3 1,  that 

a), s unan ( 1 5 )  
thus one has 

1 1 
- log K ( w ) C sup - log a)" SUP - (log U,, + log 6,). (16) 

n a l  n n 3 1  n 

The contribution from un is contained in the trivial constant term in ( 1  l ) ,  since this 
sequence keeps track of the (trivial) contribution to the growth rate of a), coming 
from the recurrence (4) when the small divisors are disregarded, i.e. setting 0, = 1 for 
all n. The sequence 8, extracts from the series the small divisors contribution. By 
means of an elementary but clever counting argument (lemma 9 in Brjuno 1971) one 
can estimate the growth rate by means of the Brjuno function: for all n 3 1 

1 
n 
-log 6, s 4B(w) + C" (17) 

where C" is some constant independent both of w and n. From this ( 1  1 )  immediately 
follows. 

The Siegel theorem on the linearisation of complex analytic maps in a neighbour- 
hood of an irrational indifferent fixed point leads to a recurrence for the power series 
coefficients of the linearisation function which is very similar to the recurrence (4) for 
the MSM conjugation function. 

Yoccoz's study of this related problem shows that the estimates obtained by the 
method of Brjuno are not optimal with respect to the factor 4 in ( 1 1 ) .  In the Siegel 
problem the small divisors have the form 

(18) 

They contribute to the growth rate of the majorant series of the linearisation function 
through a sequence in which is defined as in (14), replacing E ,  with E*,. Therefore, 
by the same argument used above, estimate (17)  holds true when 8, is replaced with s,, and 4B(w) with 2B(w). All in all, one finds that 

6, = 6 = /sin( rnw)I.  

log B ( w )  3 c -2B(w) (19) 
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where e is a constant independent of w and k ( w )  is the Siege1 critical function (in 
this case the radius of convergence of the linearisation). 

Yoccoz proves the existence of a positive constant C' such that for all w for which 
B ( w )  < m, one has 

(log k ( w ) + B ( w ) l s  ef (20) 

i.e. the factor 2 in the right-hand side of (19) is not optimal. This analysis suggests 
that the factor 4 on the right-hand side of (1 1) can be replaced by 2, so that one is 
naturally led to conjecture that 

where C ( w )  is bounded away from 0 and CO uniformly in w. 
In figure 2 we have plotted exp(-2B(w)), computed by the first 30 terms of the 

series (9), at the same random w of figure 1. The close similarity with figure 1 is evident. 

0.051 

W 

Figure 2. exp(-2B(w)) at the same random w of figure 1 .  

In figure 3 we exhibit the ratio C(w)=exp(-2B(w))/K(w): we needed to discard 
no points, since the Brjuno function has clearly correctly extracted the right vanishing 
rate of K ( w )  at resonances. Note, for instance, that for w - l /n ,  n 2 2, one has comers, 
and that it seems to be possible that C ( w )  can be extended to a continuous function 
on ]0,4[. 

As a further check we have considered a special class of rotation numbers, namely 
those quadratic irrationals whose continued fraction is constant, w p  = [ p ,  p ,  . . .], p 3 1. 
For these irrationals one can easily compute exactly the Brjuno function directly from 
(10). In fact B ( w )  is invariant under the action of integer translations w H w + m, m E Z, 
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0. 
W 

Figure 3. The ratio C(w)=exp(-2B(o))/K(w) at the same random w of figure 1 and 
figure 2. 

and the quadratic irrationals 
7 

J p 2 + 4 - p  
= [P, P, * .I 2 

w p  = 

are solutions of the equation 

w p + p  = l / w p .  

Thus by (10) one has immediately 

In figure 4 we have plotted the critical function K ( w , )  as a function of l/p2 for 
2 0 6 p S  500. Clearly in the limit p+00, K ( w , ) -  l /p2 ,  in agreement with (12) since 
up = l / p  and exp(-2B(wp)) = wZp/('-'"p)= 1/p2. 

To conclude, we want to stress that from our analysis it is evident that the Brjuno 
function also provides a simple and quite accurate tool for obtaining a priori estimates 
of breakdown thresholds, once one has fixed a normalisation by means of a single 
computation of K ( w )  from the perturbative series, so as to fix the value of C ( w )  at 
some CO = U * .  Indeed, from figure 3 one sees that C ( w )  is uniformly bounded away 
from 0 and 00 and only undergoes a variation through a factor of about three on the 
internal IO,;[. A more careful inspection shows that the maximum is reached at 
w = w2 = a- 1, where C ( w z )  = 0.130 29, thus K ( w )  5 C(w2)- '  exp(-2B(w)) = 
7.6752 exp(-2B(w)) provides a lower bound, especially sharp for w close to w 2 .  
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Figure 4. The critical function K ( w , )  as a function of l /p2; up = [ p ,  p ,  . . . ] & ( - - p ) ,  
and 20 ZZ p S 500. 

Similar results have been obtained for other complex area-preserving maps, like 
the semistandard map (Percival 1982, Buric et a1 1989, Marmi 1989), and we expect 
them to be possibly valid for more general classes of maps. 

We wish to thank G Turchetti and G Servizi for their encouragement and useful 
discussions. One of us (SM) is very grateful to J C Yoccoz for introducing him to 
Brjuno's work. 
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